Топология днк — суперспирализация.

Кольцевую ДНК, совершенно лишенную суперспиральных витков, называют релаксированной. Для того чтобы превратить релаксированную ДНК в суперспирализованную, необходимо затратить определенную энергию. Например, энергия, затрачиваемая на образование 15 суперспиральных витков в одной молекуле ДНК вируса SV-40 (ее контурная длина 1,7 мкм), составляет около 100 ккал/моль. Энергия напряжения суперспирализованной ДНК (энергия суперспирализации) примерно пропорциональна квадрату числа суперспиральных витков. Суперспирализация, по-видимому, выполняет две биологические функции. Во-первых, суперспирализованная ДНК имеет более компактную форму, чем релаксированная ДНК такой же длины. Суперспирализация может играть определенную роль в упаковке ДНК. Во-вторых, суперспирализация может влиять на степень расплетания двойной спирали и, следовательно, на ее взаимодействия с другими молекулами. Точнее, отрицательная суперспирализация может приводить к раскручиванию двойной спирали. Интересно отметить, что почти все кольцевые молекулы ДНК, встречающиеся в природе, отрицательно суперспирализованы. Важная характеристика замкнутой кольцевой ДНК -ее порядок зацепления L (от англ. linking). Число L указывает, сколько раз одна цепь пересекает другую цепь, если их спроецировать на плоскость. Число L должно быть целым. Кручение Т (от англ. twisting) и величина суперспирализа-ции W (от англ. writhe) связаны между собой уравнением L = W + Т, т.е. находятся в обратной зависимости. Порядок зацепления — топологическая характеристика; она может изменяться, лишь когда в одну или в обе цепи кольцевой ДНК вносятся разрывы. Действительно, были выделены ферменты, которые каталитически изменяют величину L. Каталитическую активность таких топоизомераз легко выявить с помощью гель-электрофореза, так как суперспирализованная ДНК более компактна и поэтому имеет большую подвижность, чем релаксированная ДНК.

Биологические макромолекулы. Топология ДНК


Читать еще…

Понравилась статья? Поделиться с друзьями: