Симметрия уравнений

Изучение уравнений Максвелла открыло нам совершенно новую идею, которая ранее не играла большой роли в науке. Это идея о том, что уравнения, как и предметы, могут быть симметричными и что уравнения, которые Природа любит использовать в своих фундаментальных законах, чрезвычайно симметричны. Сам Максвелл и не догадывался об этой идее; великолепный пример того, как из физической теории можно получить гораздо больше, чем было заложено автором!

Что означает, когда говорят, что уравнения симметричны? Хотя слово «симметрия» имеет различные, часто расплывчатые значения в повседневной жизни, в математике и физике оно определяется достаточно точно. Здесь симметрия означает Изменение без изменения. Это определение может звучать таинственно или даже парадоксально, но означает нечто совершенно конкретное.

Давайте вначале посмотрим, как это странное определение симметрии прилагается к предметам. Мы говорим, что предмет симметричен, если мы можем произвести над ним действие, которое могло бы изменить его – но в действительности не изменяет. Так, например, окружность очень симметрична, потому что вы можете повернуть ее вокруг центра и, хотя каждая ее точка сдвинется, в целом она останется той же самой окружностью, тогда как, если вы возьмете какую-то менее правильную форму и станете поворачивать ее, вы будете получать нечто совершенно иное. Правильный шестиугольник менее симметричен, потому что вы должны повернуть его на 60° (1/6 часть окружности), чтобы получить ту же самую форму, а в равностороннем треугольнике симметрии еще меньше, потому что вы должны повернуть его на 120° (1/3 часть окружности). Произвольная неправильная фигура не имеет симметрии вообще.

Можно пойти и в противоположном направлении. Мы можем начать с симметрии и прийти к объектам. Например, мы можем искать кривые, которые не меняются при вращении вокруг какой-либо точки, а затем открыть, что окружности являются уникальным воплощением такой симметрии.

Та же самая идея может быть приложена к уравнениям. Вот простое уравнение:

симметрия уравнений Лекция 1 Часть 2


Читать еще…

Понравилась статья? Поделиться с друзьями: