Проверка типов отношений. решение задач

Для строгого доказательства принадлежности введенного на некотором множестве Х бинарного отношения rтому или иномутипу необходимо проверить справедливость выполнения всех аксиом данного типа для всех возможных упорядоченных пар (х, у)I Х2.

Для доказательства того, что бинарное отношение r на множестве Х не принадлежит к рассматриваемому типу, достаточно указать хотя бы один случай нарушения какой-либо из аксиом данного типа отношений на элементах из Х.

Пример 1. Рассмотрим множество всех треугольников {Т}, заданных длинами их сторон(a, b, c)(a, b, c —вещественные числа). Проверить, будет ли устанавливать нестрогий порядок на {Т} отношение Ti r Tj = «периметр Тi не меньше периметра Тj».

Решение. Обозначим периметр треугольника Тi через Р(Тi). Для отношения нестрогого порядка должны выполняться аксиомы рефлексивности, антисимметричности, транзитивности.

1. Рефлексивность. ТiI{Т} (Р(Тi)r Р(Тi))означает: «периметр Р(Тi) каждого треугольника Тi не меньше Р(Тi)». Данное условие выполняется для всех элементов {Т}, поскольку для каждого Р(Тi)как для вещественного числасправедливо равенство Р(Тi)= Р(Тi).

2. Антисимметричность. Выполнение аксиомы у заданного отношения для любых треугольников Ti и Tj сводится к выполнению условия «если Р(Тi)? Р(Тj)и Р(Тj)? Р(Тi), то Ti = Tj », т.е. Ti и Tj — один и тот же элемент. Очевидно, оно нарушается, поскольку можно привести пример двух треугольников с одинаковыми периметрами, у которых не совпадают длины сторон.

Ответ: предложенное отношение не является отношением нестрогого порядка на множестве {Т}, поскольку у него не выполняется аксиома антисимметричности.

Замечание. В рассмотренном примере 1 справедливость аксиомы транзитивности можно не проверять, так как отрицательный ответ уже получен.

Пример 2. Выяснить, какой тип отношений вводит на множестве всех множеств U предикат Р(Х, Y)= «мощность множества Х равна мощности множества Y (½Х½=½Y½)» ?

Решение.

1.Отношение является рефлексивным, поскольку мощность любого множества равна самой себе:XIU(X r X).

2. Аксиома симметричности также выполняется, поскольку равенство мощностей множеств не зависит от порядка их упоминания — для X,YIU из равенства ½Х½=½Y½следует ½Y½=½Х½.

3. Транзитивность. Допустим, для некоторых множеств Х, Y, Z справедливо:½Х½=½Y½,½Y½=½Z½. Для доказательства транзитивности необходимо сначала доказать, что½Х½=½Z½. По определению эквивалентных множеств из ½Х½=½Y½,½Y½= ½Z½следует, что существуют взаимно однозначные отображения f : Х®Y и g:Y®Z. Композиция h = g f, переводящая Х в Z, по свойству взаимно однозначных отображений также будет взаимно однозначна. Отсюда получим, что ½Х½=½Z½, что и требовалось доказать.

Так как для рассмотренного отношения справедливы аксиомы рефлексивности, симметричности и транзитивности, то оно является отношением эквивалентности.

Ответ: заданный предикат вводит на множестве всех множеств U отношение эквивалентности.

ЗАДАЧИ

1. Проверить справедливость всех рассмотренных аксиом для отношений, заданных следующими матрицами:

а) б)

x\y a b C
a
b
c

ТИПОВЫЕ ЗАДАЧИ ПО ХИМИИ. Часть 1.


Читать еще…

Понравилась статья? Поделиться с друзьями: