Что такое размерность?

В научной фантастике уже давно обыгрываются преимущества, связанные с дополнительными измерениями пространства. Авторы часто обращаются к ним, чтобы перемещать своих персонажей из одного места Вселенной в другое, избегая утомительных путешествий со скоростью света или около того — в общем черепашьим шагом — по обычному трехмерному пространству. Так, в книге Артура Кларка “Космическая Одиссея: 2001 экспедиция на Сатурн завершается рискованным проникновением в дополнительное измерение на одном из спутников Сатурна.

Однако интерес к проблеме размерности пространства возник задолго до появления фантастики. Древние греки остро чувствовали ее значение для развития науки геометрии. Непосредственно столкнуться с проблемой размерности их заставил любопытный случай, связанный со свойствами правильных многоугольников (замкнутых плоских фигур со сторонами равной длины, например квадратов, правильных пяти-, восьмиугольников и т. п.). Количество различных правильных многоугольников безгранично — могут существовать правильные многоугольники с любым числом сторон. Однако существует всего лишь пять типов различных правильных многогранников (замкнутых объемных фигур, грани которых образованы правильными многоугольниками). Грекам было свойственно наделять геометрию глубоким мистическим смыслом, а Птолемей даже написал исследование на тему о размерности, в котором утверждалось, что в природе вообще не может существовать более трех пространственных измерений.

В дальнейшем математики, в частности Риман, систематически изучали свойства многомерных пространств с чисто математических позиций. При этом основная проблема заключалась в формулировке последовательного определения размерности. Это было совершенно необходимо для доказательства строгих теорем относительно пространств с различным числом измерений.

Интуитивно все геометрические структуры мы подразделяем на одно-, двух- и трехмерные в соответствии с их протяженностью. Так, не имеющей протяженности точке соответствует нулевая размерность. Линия является одномерной, поверхность — двумерной, объем — трехмерным. Вряд ли нам удастся лучше сформулировать эти определения, чем это сделал сам Евклид почти за 300 лет до н. э.

Точка — это то, что не имеет частей. Линия — длина, лишенная ширины.

Плоскость — это то, что имеет только длину и ширину. Объем — это то, что имеет длину, ширину и глубину.

Далее Евклид уточнял, что границами линии служат точки, границами поверхности — линии, а границей объемного тела — поверхность. Возникла мысль определить размерность по иерархической схеме, начиная с нулевой размерности точки, а затем шаг за шагом увеличивая ее на единицу. Тогда одномерным будет объект, у которого началом и концом служат точки, т.е. линия. Двигаясь далее, мы по индукции придем к определению четырехмерной структуры как ограниченной трехмерным объемом. Число измерений, которые можно логически ввести таким способом, не ограниченно, однако сама процедура не содержит каких либо указаний на реальную физическую ситуацию.

Более наглядное и ясное представление о трехмерности можно получить с помощью другой схемы, основанной на указании местоположения точек в пространстве. Представьте себе, что вам необходимо встретиться с приятелем в заранее обусловленном месте. В этом случае можно указать географическую широту и долготу выбранного места; пусть это будет, например, Эмпайрстейт билдинг. Но в этом случае остается еще одна неопределенная величина — высота. На каком этаже должна состояться встреча? Итак, в общей сложности необходимо указать три независимых числа для того, чтобы однозначно определить положение точки в пространстве. По этой причине такое пространство называют трехмерным.

Физические величины, единицы измерения и размерности


Читать еще…

Понравилась статья? Поделиться с друзьями: